Multiple Perturbed Collocation Tau Method for Solving Nonlinear Integro-Differential Equations

1*ADEBISI, AF;2TAIWO, OA;3ADEWUMI, AO;2BELLO, KA

1Department of Mathematical Sciences, Osun State University, Osogbo, Osun State, Nigeria
2Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria
3Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
*Corresponding author Email: af.adebisi@gmail.com

ABSTRACT: The purpose of the study was to investigate the numerical solution of non-linear Fredholm and Volterra integro-differential equations by the proposed method called Multiple Perturbed Collocation Tau Method (MPCTM). We assumed a perturbed approximate solution in terms of Chebyshev polynomial basis function and then determined the derivatives of the perturbed approximate solution which are then substituted into the special classes of the problems considered. Thus, resulting into n-folds integration, the resulting equation is then collocated at equally spaced interior points and the unknown constants in the approximate solution are then obtained by Newton’s method which are then substituted back into the approximate solution. Illustrative examples are given to demonstrate the efficiency, computational cost and accuracy of the method. The results obtained with some numerical examples are compared favorable with some existing numerical methods in literature and with the exact solutions where they are known in closed form.

DOI: https://dx.doi.org/10.4314/jasem.v23i1.12

Copyright: Copyright © 2019 Adebisi et al. This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 10 November 2018; Revised: 12 January 2018; Accepted 21 January 2018

Keywords: Nonlinear Problems, Tau Method, Integro-Differential, Newton’s method.

The increasing attempts in applied mathematics to model world problems usually results in functional equations such as ordinary differential equation, Integro-differential equations, Stochastic equations, Integral equations, Partial differential equations and others. Integro-Differential Equations (IDEs) which is our major concern in this work is an equation in which the unknown functions appears under the sign of integration and it also contained the derivatives of the unknown functions. Integro-Differential equations have gained a lot of interest in many application fields, such as Biological, Physical and Engineering Problems. Therefore, their numerical treatments are deserved. Integro-Differential Equations considered in this work are classified into two namely: Nonlinear Fredholm Integro-Differential Equations and Nonlinear Volterra. Integro-Differential Equations. In the case of Nonlinear Volterra Integro-Differential Equations, the upper limits of the integral is a variable while it is a fixed number or constant for Nonlinear Fredholm type. The general Nonlinear type of Fredholm Integro-Differential Equations considered in this work is given as follows

\[y^n(x) = f(x) + \int_a^b k(x,t)(Ry(t) + Ny(t))dt \] (1)

and while that of Nonlinear Volterra is given as

\[y^n(x) = f(x) + \int_0^x k(x,t)[Ry(t) + Ny(t)]dt \] (2)

together with the conditions

\[\sum_{r=0}^n a_r y^r(x_r) = \alpha_j, \quad (j = 1, 2, 3, \ldots, n) \] (3)

Here for both cases, \(y^n(x) \) is the derivative of the unknown function, \(y(x) \) is the unknown function to be determined, \(k(x,t) \) is a continuous smooth function of the integral equations, \(f(x) \) is the known function (i.e. Polynomial, Trigonometric, Exponential e.t.c). \(Ry(t) \) and \(Ny(t) \) are linear and nonlinear functions of \(u \) respectively.

Although, there have been a few researchers that had worked on Nonlinear Integro-Differential Equations, because of the linearization of system of nonlinear equations generated. This work is aimed at introducing a new approach and a reliable approximate method to handle these classes of problems. Several numerical methods have been employed to solve both equations (1) and (2) together with their boundary conditions specified in equation (3). Among them are Chebyshev Cardinal Function (Lakestani and Deighan (2010)), Variational

*Corresponding author Email: af.adebisi@gmail.com
Multiple Perturbed Collocation Tau Method for Solving Nonlinear Equations

MATERIALS AND METHODS

Chebyshev Polynomials: For convenience and for the sake of problems that exist in intervals other than $[0,1]$, $T_n(x)$ is in this subsection normalized to a general finite range $a \leq x \leq b$ as follows:

$$T^*_n(x) = \cos(N \cos^{-1} x); \quad -1 \leq x \leq 1$$

and the recurrence relation is given by

$$T^*_{n+1}(x) = 2xT^*_n(x) - T^*_{n-1}(x), \quad N \geq 1$$

where N is the degree of the polynomial.

In general, Chebyshev polynomial valid in $a \leq x \leq b$ is given as

$$T^*_n(x) = \cos \left(N \cos^{-1} \left(\frac{2x-b-a}{b-a} \right) \right)$$

and the recurrence relation is given as

$$T^*_{n+1}(x) = 2 \left(\frac{2x-b-a}{b-a} \right) T^*_n(x) - T^*_{n-1}(x)$$

Few terms of the shifted Chebyshev polynomials valid in the interval $[0,1]$ are given bellow:

$$T_0(x) = 1$$
$$T_1(x) = 2x - 1$$
$$T_2(x) = 8x^2 - 8x + 1$$
$$T_3(x) = 32x^3 - 48x^2 + 18x - 1$$
$$T_4(x) = 128x^4 - 256x^3 + 100x^2 - 32x + 1$$
$$T_5(x) = 512x^5 - 1280x^4 + 1120x^3 - 400x^2 + 50x - 1$$
$$T_6(x) = 2048x^6 - 6144x^5 + 6912x^4 - 5484x^3 + 840x^2 - 72x + 1$$
$$T_7(x) = 8192x^7 - 28672x^6 + 39424x^5 - 26990x^4 + 9408x^3 - 1568x^2 + 98x - 1$$
$$T_8(x) = 32768x^8 - 131072x^7 + 212992x^6 - 40224x^5 + 84480x^4 - 2150x^3 + 2686x^2 - 128x + 1$$

Newton’s Method for Solving Nonlinear Equations: The Newton’s method is a powerful technique for solving nonlinear equations. The Newton’s method and its variant are of central importance to compute a variety of nonlinear algebraic equations (Ortga and Rheinboldt, 1970). Considerable research effort has been devoted to the development of some efficient nonlinear algorithms to reduce the cost in the evaluation of the Jacobian matrix and its inverse. The recursive defined by

$$X^{k+1} = X^k - [J_f(X^k)]^{-1} [f(X^k)]; \quad k = 0, 1, \ldots$$

Where $x_0 \in R^n$, called Newton’s Method or Newton’s iteration, for the system of equation $f(x) = 0$. It is assumed that the Jacobian matrix $J_f(X^k)$ exists and is non-singular for each $k = 0, 1, 2, \ldots$.

RESULTS AND DISCUSSION

Multiple Perturbed Collocation Tau Method for Nonlinear Integro-Differential Equations: In this section, we consider nth order nonlinear Integro-Differential Equation of the type given in equations (1) and (2) together with their conditions in
Equation (3), we assumed a trial approximate solution of the form
\[y(x) \approx y_N(x) = \sum_{r=0}^{N} a_r T_r(x) + \sum_{i=1}^{n} \tau_i T_{N-i+1}(x) \]

Here, \(a_r \quad (r \geq 0) \) are constants to be determined, \(\tau_i \quad (i \geq 1) \) are free tau parameters to be determined, \(T_N(x) \) are Chebyshev polynomials defined in the problem considered, we obtained equation (10) is differentiated n-times to obtain.

\[
\begin{align*}
\frac{d^n}{dx^n} y_N(x) &= f(x) + \int_0^x k(x,t)\left[Ry_N(t) + Ny_N(t)\right]dt + \sum_{r=0}^{n} \tau_r T_{N-r+1}(x) \\
\end{align*}
\]

Thus, equation (11) is substituted into a slightly perturbed equation (2) and we obtained.

\[
\begin{align*}
\frac{d^n}{dx^n} y_N^\varepsilon(x) &= f(x) + \int_0^x k(x,t)\left[Ry_N^\varepsilon(t) + N\varepsilon y_N(t)\right]dt + \sum_{r=0}^{n} \tau_r T_{N-r+1}(x) \\
\end{align*}
\]

Equation (15) is then collocated at point \(x = x_i \), where \(x_i \quad i = 1,2,3,\ldots N+n+1 \) to obtain

\[
\begin{align*}
y_N(x_i) &= \sum_{r=0}^{n} \tau_r T_{N-r+1}(x_i) + \sum_{i=1}^{n} C_i x_i^j \\
\end{align*}
\]

(16) Equation (16) give rise to \((N+n+1) \) nonlinear systems of algebraic equations in \((N+2n+1) \) unknown constants. From the given conditions, \(n \) extra equations are obtained.

ADEBISI, AF; TAIWO, OA; ADEWUMI, AO; BELLO, KA
Altogether, we have \((N + 2n + 1)\) nonlinear algebraic systems of equations in \((N + 2n + 1)\) unknown constants which are then solved by Newton’s method to obtained \((N + 2n + 1)\) unknown constants. The values of the unknown constants obtained are then substituted into the trial approximate solution given in equation (10) to obtain the required approximate solution of the problem.

Application of Method on Numerical Examples: In order to demonstrate the efficiency and applicability of the new method developed in the previous subsection, we apply it to a number of nonlinear fredholm and Volterra problems.

Example 1: Consider the following nonlinear Volterra Integro-Differential equation [see (Maleknejad et al 2011)].

\[
\frac{dy}{dt} - \int_0^x \cos(x-t)y^2(t)dt = -2\sin\frac{x}{3}\cos\frac{x}{3}\cos 2x
\]

\(0 \leq x \leq 1\)

with the initial condition \(y(0) = 0\) and the exact solution \(y(x) = \cos x - \sin x\)

Solution: Here, we assumed the trial approximate solution of the form

\[
y_N = \sum_{n=0}^{N} a_n T_n(x) + H_N(x)
\]

where \(H_N(x)\) is the perturbation term and is given as

\[
H_N(x) = \sum_{i=1}^{n} \tau_i T_{N-i+1}(x)
\]

Here, we consider case \(N = 5, \ n = 1\) and thus, (18) becomes

\[
y_5(x) = a_0 + a_1(2x-1) + a_2(8x^2-8x+1) + a_3(32x^3 - 48x^2 + 18x - 1) + a_4(128x^4 - 256x^3 + 160x^2 - 32x + 1) + a_5(512x^5 - 1280x^4 + 1120x^3 - 400x^2 + 50x - 1) + \tau_1(512x^5 - 1280x^4 + 1120x^3 - 400x^2 + 50x - 1)
\]

Equation (20) at point \(x = t\), we have

\[
y_5(t) = a_0 + a_1(2t-1) + a_2(8t^2 - 8t + 1) + a_3(32t^3 - 48t^2 + 18t - 1) + a_4(128t^4 - 256t^3 + 160t^2 - 32t + 1) + a_5(512t^5 - 1280t^4 + 1120t^3 - 400t^2 + 50t - 1) + \tau_1(512t^5 - 1280t^4 + 1120t^3 - 400t^2 + 50t - 1)
\]

Equation (20) is differentiated once, to get

\[
y_5'(t) = 2a_1 + a_2(16x-8) + a_3(96x^2 - 96x + 18) + a_4(512x^3 - 768x^2 + 320x - 32) + a_5(2560x^4 - 5120x^3 + 3360x^2 - 800x + 50) + \tau_1(2560x^4 - 5120x^3 + 3360x^2 - 800x + 50)
\]

We employed Newton’s method to solve the 8 nonlinear algebraic system of equations as
Fredholm integro-differential equation (Yadollah and Sara, 2011)

Example 2: Consider the first-order nonlinear Fredholm integro-differential equation (Yadollah and Sara, 2011)

\[
\frac{dy}{dx} + py(x) = q(x),
\]

where \(p \) and \(q(x) \) are known functions. The initial condition is given by \(y(a) = y_0 \).

We apply the Multiple Perturbed Collocation Tau Method for solving the above equation.

Remark 1: Here, we have chosen the initial approximations arbitrarily as

\[
(a_{0,0}, a_{1,0}, a_{2,0}, a_{3,0}, a_{4,0}, a_{5,0}, a_{6,0})^T
\]

as

\[
(1, \frac{1}{2}, -1, \frac{1}{2}, -1, \frac{1}{4})^T
\]

the six iteration,

we obtained the following values for the unknown constants

\[
a_{0,0} = 0.373655891439964 \quad \quad a_{5,0} = -0.000326397714555
\]

\[
a_{1,0} = -0.657525413023618 \quad \quad \tau_{1,0} = 0.000010265549563
\]

\[
a_{2,0} = -0.024374210259607 \quad \quad C_{1,0} = 0.999999768993976.
\]

Substituting these values above into the trial approximate solutions (18) and after the simplification, we obtained the approximate solution of case \(N = 5 \) as

\[
y_5(x) = 0.9999999995 - 1.000011055x - 0.0997334251x^2 + 0.165237558x^3 - 0.04478192141x^4 - 0.01145560162x^5
\]

Remark 2: We have defined absolute error as:

\[
|y(x) - y_N(x)|; a \leq x \leq b
\]

Table 1: Numerical Results for Example 1

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>Exact</th>
<th>Approximate</th>
<th>MPCTM</th>
<th>Maleknejad (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>Case (N = 5)</td>
<td></td>
<td>Case (N = 5)</td>
<td>Error</td>
</tr>
<tr>
<td>0.0</td>
<td>1.000000000</td>
<td>0.9999999995</td>
<td>5.0000E-10</td>
<td>1.00E-6</td>
</tr>
<tr>
<td>0.1</td>
<td>0.8951707486</td>
<td>-0.8951711571</td>
<td>4.085E-7</td>
<td>1.60E-5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7813972470</td>
<td>-0.7813983068</td>
<td>1.0598E-6</td>
<td>2.56E-4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6598162824</td>
<td>-0.6598168826</td>
<td>6.002E-7</td>
<td>8.40E-5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5316426517</td>
<td>-0.5316423017</td>
<td>3.500E-7</td>
<td>9.43E-4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3981570233</td>
<td>-0.3981562177</td>
<td>8.056E-7</td>
<td>1.20E-5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.2606931415</td>
<td>-0.2606927741</td>
<td>3.674E-7</td>
<td>2.76E-4</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1206245001</td>
<td>-0.1206248572</td>
<td>3.571E-7</td>
<td>4.70E-5</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.0206493816</td>
<td>-0.0206496505</td>
<td>2.689E-7</td>
<td>1.10E-5</td>
</tr>
<tr>
<td>0.9</td>
<td>-0.1617169413</td>
<td>-0.1617216155</td>
<td>4.6742E-6</td>
<td>7.80E-4</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3011687000</td>
<td>-0.3011844045</td>
<td>1.57045E-6</td>
<td>8.15E-4</td>
</tr>
</tbody>
</table>

Adebisi, AF; Taiwo, OA; Adewumi, AO; Bello, KA
\[y'(x) = 1 - \frac{1}{3} x + \int_0^x xy^2(t) dt; \quad 0 \leq x \leq 1 \]

with the initial \(y(0) = 0 \), the exact solution \(y(x) = x \)

\[Y_{app} = 1.00000000x. \]

Example 3: Consider the second-order nonlinear Fredholm integro-differential equation (Hemeda, 2012)

\[y''(x) = 2 - \frac{x}{2} + \int_0^t xy(t) y'(t) dt; \quad 0 \leq x \leq 1 \]

with the initial \(y(0) = y'(0) = 0 \)

the exact solution \(y(x) = x^2 \)

\[Y_{app} = -1.0 \times 10^{-14} + 1.0000000000x^2. \]

Conclusion: In this work, we have used Multiple Perturbed Collocation Tau Method to solve Nonlinear Fredholm and Volterra Integro-Differential Equations by employing Chebyshev Polynomial basis function. Six illustrative examples clearly depict the validity and applicability of the technique. The results obtained are better than the results obtained in some literature. We also observed that the proposed method in some cases produce the exact solution where they are known in closed form. We equally suggest that the method can be extended to nonlinear problems in which the exact solutions are not known in closed form.

REFERENCES

Chen, W., (1999). “A bridge between linear and nonlinear polynomial only problems.” *Publish in computing Research Repository (CORR).*

