The burden of disease in Malawi
Cameron Bowie
Department of Community Health, College of Medicine, Blantyre, Malawi

Background
This chapter provides an overview of the epidemiology of Malawi. It offers estimates of incidence and prevalence of all major diseases and disease specific death rates. It also ranks the top diseases according to these rates and provides an estimate of the risk factors involved.

The World Health Organisation (WHO) has developed the use of a measure, Disability Adjusted Life Years (DALYs), to help calculate the burden of disease, and has produced estimates for individual countries within sub-regions of the world. These calculations are based on best estimates of incidence, prevalence and mortality data of the country in question.

A study of the contribution of diseases to the burden of disease in a resource scarce country such as Malawi can also assist priority setting and the choice of an essential health care package (EHP).

This chapter reports on the WHO results and compares WHO estimates with known local surveys of mortality and morbidity. The chapter discusses the limitations of the estimates. The results can help to prioritise public health interventions. The incidence and prevalence rates can provide health professionals with “best available” estimates for Malawi.

Methods

WHO methodology
Estimates are available from the World Health Organisation (WHO) for 2002 of DALYs, years of life lost (YLLs), years lost due to disability (YLDs) and death rates for Malawi and the sub-region, AFRO E, which includes Malawi as well as other countries in southern and central Africa.

Deaths

Overall mortality
For member states without a vital registration system as is Malawi, WHO uses other sources of adult mortality such as survey and census data to estimate the level of adult mortality. For under-five mortality, again, all available survey and census data are assessed, adjusted and averaged to estimate the probable trend in child mortality over the past few decades. For Malawi WHO used data from Census 77, Census 87, Census 98, Demographic and Health Survey 92, Demographic and Health Survey 2000, Family Formation Survey 84, National Demographic Survey 82 and the Population Change Survey 70. A life table for Malawi is then constructed providing the number of deaths by age and sex in 2002.

Cause specific mortality
The number of deaths, by age and sex, provides an essential “envelope” which constrains individual disease and injury estimates of deaths. Competing claims for the magnitude of deaths from various causes must be reconciled within this envelope. The sum of deaths from all specific causes for any sex-age group must sum to the total number of deaths for that age-sex group.

The World Health Organization contacts member states directly on a routine basis to obtain their latest data on cause-of-death from their vital registration sources. In the absence of a vital registration system, countries are requested to submit data from other reliable sources. Those data submitted by member states become part of WHO’s unique historical data base on causes of death which contains data as far back as 1950.

In the case of WHO African region where good vital registration data is existent for only three countries, a regional model pattern of specific causes of deaths is constructed using vital registration data from urban and rural South Africa. Based on this model WHO then uses data provided by member states, together with all available other sources of information on causes of death, to estimate death rates by age and sex for underlying causes of death as defined by the ICD classification rules. These death rates are applied to the UN Population Division estimates of the de facto resident population for 2002 to give numbers of expected deaths by cause for each Member State. (Annex 1 provides a table of population estimates and a population pyramid for Malawi).

Morbidity
WHO uses disease registers, population studies, epidemiological surveys and health facility data, adjusted for each country using estimates from WHO/UN programmes such as HIV/AIDS and child nutrition.

Calculation of DALYs
DALYs have been calculated using the standard formula
and central assumptions used by WHO. The formula calculates the YLLs from the number of deaths for each age group and sex for each main disease using a discount rate of 3% and weighting each year of life lost according to age. YLDs are calculated using a similar age weighting and discount rate of 3% and disability weights published by WHO. A combination of YLLs (representing premature deaths) and YLDs (representing years with a disability) produce the total burden of disease for each age group and disease expressed in DALYs.

**Risk factors**

The standard approach in epidemiology and used by WHO for estimating the health effects of a risk factor such as poor sanitation, is to calculate the attributable fraction of a disease or injury due to the risk factor as a function of the prevalence of exposure (P) and the relative-risk (RR) compared to the non-exposed group. The basic statistic in such an “exposure-based” assessment is the attributable fraction (AF), defined as the percentage reduction in disease or death that would occur if exposure to the risk factor was reduced to zero, and is calculated by equation

\[ AF = \frac{P(RR - 1)}{P(RR - 1) + 1} \]

The fraction of burden from a cause (disease or injury) that is attributed to a risk factor (AF) can be multiplied by the total burden (B) due to that cause to obtain the attributable burden (AB), i.e. \( AB = AF \times B \).

This has been done by WHO for developing countries including Malawi and these AFs have been used to calculate the proportion of the overall burden of disease to which common risk factor contribute. (www.who.int/whr/2002/annex/en/index.html).

**Local data**

**Deaths**

Local mortality data for maternal and perinatal death rates have been taken from the Demographic Health Survey (DHS) undertaken in 2000. Road traffic accident death rates have been taken from the Africa Road Safety Review of 2000. The most recent (2003) HIV antenatal surveillance prevalence rates have been adjusted for the differences found between antenatal testing and community surveys in Karonga, a district in Malawi. These have been used to calculate HIV deaths using projections produced by UNAID’s EPP and Spectrum software.

To avoid double counting, it has been assumed that a sixth of maternal deaths as estimated in the Demographic and Health Survey of 2000 (DHS 2000) are HIV/AIDS deaths. This proportion has been estimated in the following way. Up to a third of pregnancies are HIV positive so this can be considered the upper limit of HIV related maternal deaths. A maternal mortality audit in the southern region of Malawi has found a third of maternal deaths are indirect (not directly caused by obstetric problems) of which a quarter are thought to be HIV related. The lower limit of HIV related maternal deaths is therefore a twelfth. A sixth, used in this chapter, is midway between these two limits. These have been included as HIV deaths and excluded as maternal deaths.

Deaths in health institutions are recorded routinely in the Health Management Information System (HMIS). WHO estimates of deaths are compared to the National Statistics Office projections for 2002, found on the NSO website.

**Morbidity**

The Integrated Disease Surveillance and Response (IDSR) reporting system provides data on the incidence of immunization related and other diseases. Malawi has high immunisation programme coverage. Very few measles, pertussis or polio cases have been reported. Estimates of new HIV cases are derived from the antenatal surveillance surveys using EPP and Spectrum. HMIS reports on disease specific patient attendances and admissions. The rates for malaria reported as attending a health facility have been used (national incidence of 730/1000 for under 5 year olds) and adjusted upwards to take into account the fact that only a proportion (26%) of fever cases reported in the DHS2000 are taken to a health facility and adjusted downwards to take into account the fact that only 21% of fever cases are actually due to malaria as found in a local survey in Blantyre, Malawi.

DHS 2000 reports rates for childhood malnutrition and diarrhoea prevalence. Recent prevalence surveys are available for schistosomiasis, filariasis associated hydrocoele and lymphoedema, anaemia, soil-transmitted helminths and blindness.

**Results**

**Comparing WHO and local data**

**Deaths**

The rates of the common causes of death as recorded in HMIS have been compared to those provided by WHO and none are found to be in excess of these,
so the WHO death rate estimates have been used on
the premise that most deaths in Malawi occur outside a
health facility.

WHO estimates of deaths for Malawi in 2002 are higher
than projections provided by the National Statistics
Office (NSO) based on the 1998 census and projected
forward to 2002 (Table1).

Table 1. A comparison of WHO and National Statistics
Office estimates of deaths in Malawi 2002

<table>
<thead>
<tr>
<th>Malawi 2002</th>
<th>NSO*</th>
<th>WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of deaths – all ages</td>
<td>223,110</td>
<td>257,510</td>
</tr>
<tr>
<td>Deaths under 5 years of age</td>
<td>80,874</td>
<td>99,133</td>
</tr>
</tbody>
</table>

*National Statistics Office

Incidences and prevalence

The estimates used by WHO can be compared to recent
surveys conducted in Malawi. WHO estimates are either
very similar or somewhat higher than data from local
sources (Table 2). The discrepancy concerning AIDS
deaths and maternal mortality are particularly high. See
individual chapters for possible explanations.

Table 2. A comparison of Malawi 2002 incidence and prevalence rates used by Global Burden of Disease (GBD)
WHO Unit and estimates from local surveys

<table>
<thead>
<tr>
<th>Disease</th>
<th>Age group</th>
<th>GBD Incidence per 1000</th>
<th>Local Source (reference)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea</td>
<td>0-4</td>
<td>5154</td>
<td>DHS2000 (4)</td>
<td>1</td>
</tr>
<tr>
<td>Cataract</td>
<td>all ages</td>
<td>2.7</td>
<td>Nkhoma blindness prevention survey (13)</td>
<td>2</td>
</tr>
<tr>
<td>Measles</td>
<td>0-4</td>
<td>0.05</td>
<td>EPI report</td>
<td>3</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>all ages</td>
<td>0.002</td>
<td>HMIS (9)</td>
<td>4</td>
</tr>
<tr>
<td>Pertussis</td>
<td>0-4</td>
<td>0.14</td>
<td>EPI report</td>
<td>5</td>
</tr>
<tr>
<td>Road traffic deaths</td>
<td>all ages</td>
<td>0.29</td>
<td>NRSMC (6)</td>
<td>6</td>
</tr>
<tr>
<td>HIV</td>
<td>15-44</td>
<td>24</td>
<td>Spectrum adjusted for age, sex and rurality (7,8)</td>
<td>7</td>
</tr>
<tr>
<td>AIDS</td>
<td>15-44</td>
<td>9.89</td>
<td>Spectrum adjusted for age, sex and rurality (7,8)</td>
<td>8</td>
</tr>
<tr>
<td>AIDS deaths</td>
<td>15-44</td>
<td>11.53</td>
<td>Spectrum adjusted for age, sex and rurality (7,8)</td>
<td>9</td>
</tr>
<tr>
<td>Maternal mortality</td>
<td>15-49</td>
<td>3.3</td>
<td>DHS2000 (less 1/6th due to AIDS) (4)</td>
<td>10</td>
</tr>
<tr>
<td>Perinatal mortality</td>
<td>0-4</td>
<td>24.3</td>
<td>DHS2000 (4)</td>
<td>11</td>
</tr>
<tr>
<td>Malaria</td>
<td>0-4</td>
<td>944</td>
<td>HMS adjusted for non specificity of fever and non-attenders (4,9)</td>
<td>12</td>
</tr>
</tbody>
</table>

Prevalence per 1000

<table>
<thead>
<tr>
<th>Disease</th>
<th>Incidence</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>4.7</td>
<td>TB Control programme</td>
</tr>
<tr>
<td>Wasting</td>
<td>0.4</td>
<td>DHS2000 (4)</td>
</tr>
<tr>
<td>Stunting</td>
<td>0.4</td>
<td>DHS2000 (4)</td>
</tr>
<tr>
<td>Syphilis in females</td>
<td>16.1</td>
<td>NAC antenatal surveillance 2003</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>5.1</td>
<td>National survey 2002 (10)</td>
</tr>
<tr>
<td>Filariasis</td>
<td>81</td>
<td>National survey 2004 (11)</td>
</tr>
</tbody>
</table>

Comments
1. Nkoma study reporting number needing surgery
2. HMIS diagnosis suspect
3. DHS2000 uses sisterhood method
4. TB Control programme estimates about 50% unidentified
5. Antenatal surveillance will underestimate due to syphilis causing infertility
### Table 3. Top ten diseases in Malawi in 2002 ranked by estimates made by WHO of the number of deaths, the burden of disease (DALYs), the proportion of illness (YLDs) and years of life lost (YLLs)

#### Leading Causes of Mortality and Disability

**Malawi, 2002**

<table>
<thead>
<tr>
<th>Mortality (YLL)</th>
<th>Disability (YLD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>Disease or injury</td>
</tr>
<tr>
<td>1</td>
<td>HIV/AIDS</td>
</tr>
<tr>
<td>2</td>
<td>Lower Respiratory infections</td>
</tr>
<tr>
<td>3</td>
<td>Malaria</td>
</tr>
<tr>
<td>4</td>
<td>Diarrhoeal diseases</td>
</tr>
<tr>
<td>5</td>
<td>Conditions arising during the perinatal period</td>
</tr>
<tr>
<td>6</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>7</td>
<td>Road traffic accidents</td>
</tr>
<tr>
<td>8</td>
<td>Protein-energy malnutrition</td>
</tr>
<tr>
<td>9</td>
<td>Maternal haemorrhage</td>
</tr>
<tr>
<td>10</td>
<td>Drownings</td>
</tr>
</tbody>
</table>

#### Figure 1. WHO estimates of proportions of deaths in Malawi 2002 causes by infectious and non-communicable diseases compared to other countries

#### Distribution of deaths by major cause group

**Malawi and region, 2002**

[Bar chart showing distribution of deaths by major cause group for Malawi and region in 2002.]

- Injuries
- Non-communicable
- Communicable, maternal, perinatal and nutritional conditions
Deaths by selected causes and sex  
Malawi, 2002

Total deaths in males: 128,124  
Total deaths in females: 129,386

Figure 2. WHO estimates of deaths in Malawi 2002 by disease category

DALYs by selected causes and sex  
Malawi, 2002

Total DALYs in males: 4,003,865  
Total DALYs in females: 4,275,291

Figure 3. WHO estimates of burden of disease in Malawi 2002 by disease category
Number of DALYs by cause, age & sex
Malawi, 2002

Figure 4. WHO estimates of number of deaths in 8 disease categories in Malawi 2002

Figure 5. WHO estimates of burden of disease (DALYS) in 8 disease categories in Malawi 2002

Number of deaths by cause, age & sex
Malawi, 2002

Figure 5. WHO estimates of burden of disease (DALYS) in 8 disease categories in Malawi 2002
Discussion

The ranking of the top diseases in Malawi allows an assessment of priority diseases and which might be included in The Ministry of Health’s EHP if cost effective interventions are available. The leading cause of disease burden in Malawi in the early years of the millennium is HIV/AIDS by a huge margin. This is followed by lower respiratory diseases, malaria, diarrhoeal diseases and perinatal conditions. The EHP includes antiretroviral drugs and treatment of opportunistic infections and antimalarial treatment. It also targets cheap effective interventions for lower respiratory diseases and diarrhoea (for which a rotavirus vaccine...
The Burden of Disease in Malawi

is a new potential intervention. Safe motherhood is a national priority. However there is a huge burden of disease attributable to psychiatric disease, although there is no local mental health survey is available to confirm this. Thought needs to be given to the possible inclusion of practical low cost interventions to alleviate mental illnesses, which are disabling but not usually mortal conditions, in the EHP. The need to prioritise the prevention of road traffic accidents is apparent.

How accurate are these estimates? There are some differences, sometimes small and insignificant, some significantly different, between the local surveys and local population projections and the WHO estimates. On the whole the WHO estimates take into account more recent surveys and consider trends in incidence and deaths. For that reason the WHO are likely to be more accurate. Individual chapters will list the local data in more detail.

Conclusions

HIV/AIDS has overtaken malaria as the major cause of disease in Malawi. The two prominent diseases not included in the Malawi EHP are mental illness and road traffic accidents. The best contemporary available estimates are with the WHO Global Burden of Disease Project.

References